<行列式降阶法-生活常识-龙咔百科
> 生活常识 > 列表
行列式降阶法
时间:2024-12-23 11:38:34
答案

行列式降阶法是一种计算行列式的方法,也称为行列式按行(列)展开法。该方法将行列式逐步降阶,直到降为1阶行列式,然后计算其值。具体步骤如下:

1. 对于一个n阶行列式,从第一行(或第一列)开始,选取一个元素作为展开元素。

2. 对于选取的展开元素,计算其代数余子式,即去掉所在行和列后剩余元素构成的(n-1)阶行列式乘上(-1)的指数。

3. 将展开元素与其代数余子式相乘,得到展开式的一个部分。

4. 对于每个不同的展开元素,重复第2、3步,将所有部分相加得到行列式的值。

5. 如果展开元素所在的行(或列)中有零元素,则其代数余子式为0,可以跳过该元素。

6. 逐步降阶,直到计算出1阶行列式的值。

该方法的时间复杂度为O(n!),因此只适用于较小的行列式。对于较大的行列式,可以使用高斯消元法或LU分解法等更高效的方法计算。

推荐
© 2024 龙咔百科