<高一三角恒等变换公式和三角函数诱导公式-百科-龙咔百科
> 百科 > 列表
高一三角恒等变换公式和三角函数诱导公式
时间:2024-12-23 19:29:41
答案

公式一:

 设α为任意角,终边相同的角的同一三角函数的值相等:

 sin(2kπ+α)=sinα

 cos(2kπ+α)=cosα

 tan(2kπ+α)=tanα

 cot(2kπ+α)=cotα

 公式二:

 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

 sin(π+α)=-sinα

 cos(π+α)=-cosα

 tan(π+α)=tanα

 cot(π+α)=cotα

 公式三:

 任意角α与 -α的三角函数值之间的关系:

 sin(-α)=-sinα

 cos(-α)=cosα

 tan(-α)=-tanα

 cot(-α)=-cotα

 公式四:

 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

 sin(π-α)=sinα

 cos(π-α)=-cosα

 tan(π-α)=-tanα

 cot(π-α)=-cotα

 公式五:

 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

 sin(2π-α)=-sinα

 cos(2π-α)=cosα

 tan(2π-α)=-tanα

 cot(2π-α)=-cotα

 公式六:

 π/2±α及3π/2±α与α的三角函数值之间的关系:

 sin(π/2+α)=cosα

 cos(π/2+α)=-sinα

 tan(π/2+α)=-cotα

 cot(π/2+α)=-tanα

 sin(π/2-α)=cosα

 cos(π/2-α)=sinα

 tan(π/2-α)=cotα

 cot(π/2-α)=tanα

 sin(3π/2+α)=-cosα

 cos(3π/2+α)=sinα

 tan(3π/2+α)=-cotα

 cot(3π/2+α)=-tanα

 sin(3π/2-α)=-cosα

 cos(3π/2-α)=-sinα

 tan(3π/2-α)=cotα

 cot(3π/2-α)=tanα

 (以上k∈Z)

推荐
© 2024 龙咔百科