<拉氏反变换三种情况-百科知识-龙咔百科
> 百科知识 > 列表
拉氏反变换三种情况
时间:2024-12-23 17:01:55
答案

拉氏反变换,也称拉氏逆变换,是工程数学中常用的一种积分变换。它存在以下三种情况:(1)极点为实数,无重根;(2)极点为共轭复根;(3)有多重实根。

拉氏逆变换的第一种情况是极点为实数,无重根。这种情况下做拉式逆变换是比较简单的。首先,要判断F(s) 是否为真分式(分母的最高次数大于分子的次数),如果不是真分式,要先化为真分式。确定为真分式后,可以利用因式分解的方法化简。第二种情况和第三种情况的求解相对比较复杂。

拉氏逆变换公式

拉氏变换可以将微分方程转变成复变数代数方程,是将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。拉氏逆变换则是由象函数F(s) 求解象原函数 f(t) 的过程。

拉氏变换对照表

推荐
© 2024 龙咔百科