坐标变换公式(formula of a coordinates transformation)是线性空间的向量关于不同基的坐标之间的关系式,是解析几何中(不变原点的)坐标变换公式的推广。
设V是域P上n维线性空间,且ε1,ε2,…,εn与ε′1,ε′2,…,ε′n皆是V的基,于是有:
ε′i=ajiεj(i=1,2,…,n).
以ε′i关于基ε1,ε2,…,εn的坐标(a1i,a2i,…,ani)为第i列构成的n阶矩阵(aij)称为由基ε1,ε2,…,εn到基ε′1,ε′2,…,ε′n的过渡矩阵,
若α∈V关于基ε1,ε2,…,εn与基ε′1,ε′2,…,ε′n的坐标分别为(x1,x2,…,xn)与(x′1,x′2,…,x′n),则其两坐标间的关系
基变换的实质是, 将某向量空间中的元素v 由有序基 F[w1,w2...vn] v=x1w1+x2w2 +...xnwn的线性组合,表示成另一有序基E[v1,v2,...vn]即v=y1v1+y2v2+...ynvn的线性组合