令(x+y)/z=(y+z)/x=(x+z)/y=k
所以x+y=kz
y+z=kx
x+z=ky
相加
2(x+y+z)=k(x+y+z)
(x+y+z)(k-2)=0
若x+y+z=0,则x+y=-z
所以(x+y-2z)/(x+y+2z)
=-3z/z
=-3
若k-2=0,k=2
则x+y=kz=2z
所以(x+y-2z)/(x+y+2z)
=0/4z
=0
所以(x+y-2z)/(x+y+2z)=0或-3
令(x+y)/z=(y+z)/x=(x+z)/y=k
所以x+y=kz
y+z=kx
x+z=ky
相加
2(x+y+z)=k(x+y+z)
(x+y+z)(k-2)=0
若x+y+z=0,则x+y=-z
所以(x+y-2z)/(x+y+2z)
=-3z/z
=-3
若k-2=0,k=2
则x+y=kz=2z
所以(x+y-2z)/(x+y+2z)
=0/4z
=0
所以(x+y-2z)/(x+y+2z)=0或-3