多项式乘以多项式的运算法则:先将一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。多项式乘以多项式的运算法则是根据乘法分配律得出的,其用公式表示为:(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd。
一、多项式的介绍
多项式指的是若干个单项式相加组成的代数式,(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。
二、多项式表达式
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。
实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
多项式的运算还有:
1、多项式的加法
多项式是指有限的单项式之和。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。多项式的加法指的是:多项式中同类项的系数相加,字母保持不变也可以说是合并同类项。
2、多项式的减法
多项式的减法是多项式的一种运算法则,几个多项式相加减的法则是:首先把带减号的多项式中的每个单项式都变号合成一个多项式,然后合并同类项,并按字典排列法写出结果
3、多项式的除法
多项式除法是除法的一种类型,俗称长除。适用于整式除法、小数除法、多项式除法(即因式分解)等较重视计算过程和商数的除法,过程中兼用了乘法和减法。是代数中的一种算法,用一个同次或低次的多项式去除另一个多项式。