求函数的定义域需要从这几个方面入手:
(1)分母不为零。
(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1。
(5)y=tanx中x≠kπ+π/2。
不同函数的定义域求法不同,举例:y=√(x+1)的定义域。
因为√(x+1)是偶次根式,所以(x+1)≥0,即x≥-1。
扩展资料:
求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。含义是指自变量 x的取值范围。
定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或淡化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏。
事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。
如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。