等差数列的通项公式为:an=a1+(n-1)d
或an=am+(n-m)d
前n项和公式为:sn=na1+(n(n-1))/2 d或sn=(a1+an)n/2
若m+n=2p则:am+an=2ap
以上n均为正整数
文字翻译
第n项的值=首项+(项数-1)*公差
前n项的和=(首项+末项)*项数/2
公差=后项-前项
(1)等比数列的通项公式是:An=A1×q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2) 任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1