性质如下:
一般而言,等比性质主要有以下几点:
1、若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。
2、在等比数列中,依次每k项之和仍成等比数列。
3、若“G是a、b的等比中项”则“G2=ab(G≠0)”。
这里要说一个很重要的知识点,十分重要。就是非零常数列既是等差数列又是等比数列。而且等比数列不只是就只有之前写的通项公式,只要题目中给了任意一项和公比就可以求解出通项公式。
等比数列的特点:
等比数列是指从第二项起,每一项与它的前一项的`比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。