坐标系的三要素是:原点、正方向、单位长度,以上三点就是坐标系的三要素。
1、原点:
在数学上,数轴上原点为0点,坐标系统的原点是指坐标轴的交点。它和正方向、单位长度并称为数轴的三要素,三者缺一不可。在二维直角坐标系中,原点的坐标为(0,0)。而在三维直角坐标系中,原点的坐标为(0,0,0)。
原点在数轴、二维和三维坐标系中起到参考基准的作用,依据此点可以计算出其他点的坐标等。
2、正方向
正方向是人们规定的一个方向,与正方向相反的是负方向。在数轴中,它是三要素之一;在坐标系中,它也是不可或缺的一部分。引入“正方向”的概念的目的是更好地分析和表示问题。
3、单位长度
一个单位的长度。单位1是人们设定的一个参考标准,单位长度就是可供参考的标准,它没有固定值,依设定而变动,不是实际的长度计量单位。从原点到数1的距离并非是某一特定的长度计量标准。
坐标系的类型:
1、极坐标系。
在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。极点的极径为零,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标。
2、球坐标系。
球坐标是一种三维坐标。分别有原点、方位角、仰角、距离构成。设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定。
其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段在坐标平面xoy的投影所转过的角,这里M为点P在xOy面上的投影。
3、柱坐标系。
柱坐标系中的三个坐标变量是r、φ、z。与直角坐标系相同,柱坐标系中也有一个z变量。各变量的变化范围是:r∈[0,+∞),φ∈[0,2π],z∈R,其中x=rcosφy=rsinφ。