就是你去买一斤肉,你买了3斤,每斤9元,最后付了27块钱,27跟3就成正比例,以9元为基准,随着你买的重量变化而等比例变化。
概念
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系.用字母式子表示为x/y=k([1]一定)
意义
满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例。
显然,若y与x成正比例,则y/x=k(k为常量);反之亦然。
例如:在行程问题中,若速度一定时,则路程与时间成正比例;在工程问题中,若工作效率一定时,则工作总量与工作时间成正比例。
注意:k不能等于0.
相关联系相同之处
1. 事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。
3.相对应的两个变数的积或商都是一定的。
相互转化
当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例。
例子
正方形的周长与边长 (比值4)。
圆的周长与直径 (比值π)。
购买的总价与购买的数量(比值 单价)。
路程的例子:
1.速度一定,路程和时间成正比例。
2.时间一定,路程和速度成正比例。
都是定一个,变一个 。例如aX=Y中,a不变,则 X与Y成正比例。
圆的周长和半径成正比例吗?为什么?
答:∵圆的周长÷圆的半径=2π,∴圆的周长和半径成正比例。
易错的比例:
圆的面积(S):半径(R)=πR
上面这个比例是错误的。它不属于正比例。因为(S:R=πR)因为根据上面所说,比值须是一个不变的量,而比的前项和后项必须是可以变化的量,如果R变化,那比值也会变化,所以圆的面积与半径不成正比例。
还有一种错误的正比例:圆的面积(S):π=R·R(一定),这是一个错误的比例,因为比值是不变的量,前项与后项应随着一个的变化而变化,而在这里,比值是个固定的量,而π也是一个固定的量,前项无法变化,这个比例就成了一个固定的比例,不符合上面所说的前项和后项必须是可以变化的量。
正方形的面积与边长中, S:A=A
由上述可以看出:比值是个变量,它不能与比的任意一项相同,所以这个比例也不是正比例。
但如果圆的面积(S):(R·R)(R的平方)=π,这可看成一个正比例,它是S与(R·R)成正比例。
↑一种量
9 ╱
8 ╱
7 ╱
6 ╱
5 ╱
4 ╱
3 ╱
2 ╱
1 ╱
除法 1 2 3 4 5 6 7 8 9
→一种量
正比例的图像是在一条过原点的直线上。
就是从统计表的横坐标、纵坐标交汇处沿左下角到右上角的对角线发展,延伸至表格外,
在这里正比例的意义上它可以向下延伸,所以认为它是直线。