1、多少只袜子才能配成一对?
传统观念认为,为了确保能配成一对袜子,至少需要取出两只。然而,这种想法在某些情况下并不成立。假设你有一抽屉黑色和蓝色的袜子,在不看的前提下,随机取出两只,它们可能是不同颜色的,这样你就无法立刻配成一对。但是,如果你再取出第三只袜子,无论前两只是什么颜色,第三只总会有与之一致的,从而确保你至少有一双颜色相同的袜子。这个现象遵循一个简单的数学原则:当你有N种不同颜色的袜子时,你需要取出N+1只才有可能确保有一双匹配的。
2、燃绳计时
如何仅凭一根绳子和一盒火柴在黑暗中准确测量出半小时的时间?一种方法是从绳子两端同时点燃,因为绳子不同位置的燃烧速度不同,这样你就能确保绳子燃烧完毕正好是半小时。
3、火车相向而行问题
两辆速度相同的火车相向而行,一只苍蝇从其中一辆火车上起飞,以每小时60英里的速度向另一辆火车飞去,然后在到达后立刻返回。问题是,苍蝇在被两车相撞并被压碎之前,一共飞行了多远?实际上,苍蝇的飞行距离取决于两车的相对速度。因为两车的相对速度是100英里/小时,所以苍蝇在两车相撞之前,总共飞行了60英里。
4、掷硬币并非最公平
抛硬币被认为是一个公平的方法,因为正面和反面出现的概率都是50%。然而,实际测试显示,如果按照常规方法抛硬币,即用大拇指轻弹,那么硬币落地时正面朝上的概率约为51%。这是因为有些时候硬币不会翻转,而是像飞盘一样弹起然后落下。
5、同一天过生日的概率
假设你参加了一个由50人组成的聚会,问两个人生日相同的概率是多少?大多数人可能会认为这个概率很小,可能是七分之一。但事实上,如果生日在一年中均匀分布,那么两个人生日相同的概率是97%。
6、唐僧师徒摘桃子
唐僧的三个徒弟悟空、八戒和沙僧分别带来了他们的摘桃成果。八戒说他的桃子不到100个,但3个3个地数,最后剩1个;沙僧说他的桃子4个4个地数,最后剩1个;悟空则说他的桃子5个5个地数,最后剩1个。通过数学推理,我们可以得出他们每人摘了21个桃子。
7、唐僧取经
唐僧在地上写了三个数字,分别是23456、130567和120034,要求徒弟们正确读出这些数字。八戒、孙悟空和沙和尚分别读出了错误的数字,唐僧纠正了他们的错误,并指出了多位数读法的正确规则。